
Probabilistic Color Based Segmentation and Detection
ECE 276A: Sensing and Estimation in Robotics

Inderjot Singh Saggu
Electrical and Computer Engineering
University of California, San Diego1

Abstract— A pixel-wise segmentation algorithm is imple-
mented that uses logistic regression to classify each pixel as
blue or not-blue . The blue regions are then grouped together
and shape statistics is used to identify possible candidates for
”Barrel” class. Finally, a list of bounding box coordinates are
generated corresponding to each detected blue barrel.

I. INTRODUCTION

Object based segmentation and localization are funda-
mental problems in computer vision that have tremendous
applications in robotics, autonomous vehicles and more
complex tasks like motion planning, scene understanding and
object tracking. Most state of the art algorithms today use
deep learning based techniques that require large amount of
annotated data which becomes a major bottleneck. These
algorithms rely on building a hierarchy of feature transforms
where all the features are learned by the algorithm itself.
This works well but is an overkill for implementing a simple
and robust single object class segmentation and localization.
The goal of this project is to segment and detect instances
of ”blue barrels” in an image. The classifier uses pixel
values as features and implements logistic regression for
classifying each pixel as blue barrel or not. The learned
model is robust to illumination changes, scale, and minor
occlusion. It can also detect multiple instances of blue barrels
and returns the bounding box coordinates for each one
of them. The ”barrelness” for each region is determined
using shape statistics that are based on the properties of the
bounding box and fitted ellipsoid. The properties of interest
mainly are the eccentricity and the major/minor axis lengths.
The accompanying code has two methods, ”segment image”
and ”get bounding box” that return a mask image for blue
barrels and a list of bounding box coordinates for the same
respectively.

II. PROBLEM FORMULATION

We consider each pixel in an image as a vector xij where
i,j represent the pixel location. Each pixel vector, xij ∈ R3

for RGB images, and specifically in the range [0, 255] for
uint8 type images. Also, each vector has an associated label
yij that is either {1, 0} depending upon whether the pixel
belongs to blue barrel or not respectively.
This problem is modelled as a classic discriminative learning
problem where we want to learn p(Y|X, θ), here Y are the

1

labels associated with the set of vectors X and the probability
function is parameterized by θ. We use logistic regression
for converting the continuous estimates into discrete distri-
butions for classification. Particularly, we use the sigmoid
function, σ(z).

σ(z) =
1

1 + exp(−z)
(1)

What makes the sigmoid function interesting is that it’s
derivative can be evaluated easily.

σ
′
(z) = σ(z) ∗ (1− σ(z)) (2)

For logistic regression the parameter θ are the weights w.
The bias term can be included by augmenting each pixel
vector to R4 with value 1 in the extra dimension.

p(yi = 1|xi, w) = σ(xT
i w) =

1

1 + exp(−xT
i w)

(3)

p(yi = 0|xi, w) = 1− σ(xT
i w) (4)

A. Training

We use this to model the probability distribution of a pixel
belonging to class blue-barrel or not blue-barrel. We can
measure the performance of our model using cross-entropy
loss which quantifies the difference between two probability
distributions.

L = − 1

N

n∑
i=1

yi ∗ log(p(xi) + (1− yi) ∗ log(1− p(xi)) (5)

We use gradient descent algorithm to iteratively estimate w.
Here α is the learning rate.

w(t+1) = w(t) + α ∗ 1

N

n∑
i=1

xi(yi − σ(xT
i w

(t))) (6)

B. Testing

Given a test image we compute σ(xij
Tw) for all i,j

belonging to the image. This gives us a single channel matrix
with values ranging between 0 and 1, and the same size
as the original image. We then use the heuristic that, if
the value at each pixel in the computed matrix lies above
mean + 2* (standard deviation) it is classified as blue region
belonging to a barrel, else not-blue barrel. The next part
involves detecting contours, defining a ”barrelness” criteria
and subsequently generating bounding box coordinates.



III. TECHNICAL APPROACH

The segmentation and localization pipeline for this project
can be broken down into broadly into five parts

1) Manual annotation of images using Region-of-Interest
Polygon method

2) Training a Logistic Regression Classifier for generating
pixel-wise scores for segmentation.

3) Testing the model resulting in a binary mask.
4) Combining common regions together and using Region

Properties to determine ”barrelness”
5) Returning bounding box coordinates for blue-barrel

regions.

A. Manual Annotation of Images

We use an open-source python function roipoly (Region
of Interest Polygon) for manual annotation. It allows the user
to draw a polygon bounding box around region of interest,
generating a binary mask where everything inside the region
has a value of one and the rest zero. It also allows us to draw
multiple polygons.

Fig. 1. Manual Annotation Results

B. Training Logistic Regression Classifier

We first normalize the images we are dealing with so
that they lie within [-0.5, 0.5] for ease of learning. We
have already discussed the math involved in implementing a
generic binary logistic regression classifier. For this particular
problem, each image had a size of 800*1200 and we had a
total of 46 images. Hence, training the classifier on the entire
batch would have been computationally intensive. Instead
we implement mini-batch learning that treats each image as
one mini-batch, computes the gradients based on the error
between the output of the model and ground-truth labels
and updates the weights. For training set of ’n’ images we
have ’n’ updates per epoch. The model is trained on multiple
epochs and the performance is evaluated using cross-entropy
loss on both training set and a validation set. We split the
complete dataset into 36 images for training and 10 images
for testing. We train the model on 30 images and compute
the cross-entropy loss on both the training and validation set
to check overfitting.

Fig. 2. Training Loss per Epoch

C. Testing the Trained Model

For testing the model we load the trained weights and pass
the image as input to our model, where the computation is
carried out pixel-wise. We then used the heuristic that blue
regions would have higher predicted probabilities and hence
values above mean + 2* (standard variance) are classified as
blue. We can also use a simple threshold of greater than
or less than 0.5 but observed that the proposed heuristic
works better especially when there are several moderately
blue objects present in the scene. The thresholding method
classifies these pixels as blue-regions too whereas the method
used is able to neglect these semi-blue regions for strong and
definitive blue of the barrel.

D. Combining Region and Defining ”Barrelness” using Re-
gion Properties

Once we have the binary mask we can use contour
detection to give boundary to select regions that belong to
a particular class (blue-barrel). This makes the model robust
to occlusion to some extent. We can also use other OpenCV
functions like dilute that gives surrounding pixels the same
value, so regions hidden also get considered to be classified
as blue-barrel if they are close enough to the barrel originally.
Based on the resulting mask we use Scimage.measure’s label
function that finds different connected regions and assigns
the same value to all pixels belonging to a particular region.
This can be viewed as a method for generating proposals for
possible barrels based on the mask image.
Defining Barrelness: Based on the different generated regions
and the actual ground-truth we attempt to find out the
conditions that define a barrel. For this region properties
method is used from Skimage.measure that fits a ellipse to
the region and gives us all the fields related to the ellipse
along with many other fields. The ones we are particularly
interested are eccentricity, and major/minor axis length. For
this project the following constraints were used

1) Eccentricity: Based on region properties of different
false positives and true positives, a range was deter-
mined for eccentricity values (¿ 0.7)

2) Orientation: Orientation values between −π
4 and π

4
were determined to be best suited to the given dataset



3) Ratio of region-area to Bounding-box area: Since
the barrel is approximately a rectangle this ratio is
close to 1 for valid barrel-regions (¿ 0.75)

4) Area: We want to make our model robust to scale
hence it might seem counter intuitive to have .area as
a constraint but in practice it works well to remove
small noisy regions.

E. Result: Bounding-Box Coordinates and Segmented Image

We use the final detected regions to modify the initial
mask image and ignore the segmented regions which are not
bounding boxes. This gives us the final segmented image. We
then use Matplotlib’s in built method for generating boxes
for each of the final detected barrel regions.

IV. RESULTS

The first part in this project was manual annotation of
images which gives us a decent approximation to ground-
truth. There are miss-classifications that are bound to creep
in but the model is robust enough to ignore this noise. Also
the problem that we are looking at involves just two classes
so binary labels are enough. Fig. 1 shows two of the resulting
images. The training loss per epoch is plotted in Fig.2. We
can now look at the results of the model on training images
and what worked and what didn’t. The train/test split was
selected a random with approximately 80:20 split between
them.

Fig. 3. Results on Training-Set Images

The model gives reasonable results on trained images, and
is robust to occlusion, and blue non-barrel objects that are
not close to the barrel. It also successfully segments multiple
instances of barrels.

Fig. 4. Results on Test-Set Images

From the test results we observe the robustness of the
model to slight occlusion and blue non-barrel objects. The
model also performs well under low-light conditions.

Fig. 5. Results on Low-Light Images

Till now we have only looked at cases that worked well
but for some cases we get many false positives and enforcing
a stronger barrelness condition ends up reducing the number
of true-positives which we want to avoid.



Fig. 6. Types of Failed Cases: (Top-to-bottom) (a) Segmentation failure;
(b) Multiple false-positives; (c) Occlusion; (d) False region detected

For the first image the blue structure possibly distorts
the perceived geometry of the barrel leading to a failed
blue-barrel segmentation and subsequently bounding-box.
The second image is probably a result of weights trying to
accommodate blue-barrels in low-light conditions. The false-
positive regions appear as if there is a barrel that is in the
dark (darker shade of blue). This is a fundamental constraint
of a model which is not complex, like logistic regression.
For the third image parameters chosen for dilate method are
unable to combine the smaller detected regions together to
accurately segment the barrel. The region segmented doesn’t
satisfy the barrel constraints and is rejected. The final image
has a barrel surrounded by a light blue background. The
model detects a barrel like shape in the corner of the region
and ignores the rest. It is likely that the blue region detected
by logistic regression, contained the barrel along with a
part of the surrounding region, since it’s blue. The resulting
region would not have satisfied the shape constraints imposed
for barrels.

V. CONCLUSION AND FUTURE WORK

Color based segmentation and detection of a particular
object, like a barrel for our case, can achieve reasonable re-
sults using logistic regression based pixel-wise classification
algorithm. We achieved a final test-set score of 80/90 and the
model performed well on our test set as well under different

illumination conditions, occlusion, scale and multi-instance
segmentation and detection. The model can be made more
robust by improving each step of the pipeline starting from
manual annotation.

• Current methods is accurate but cannot be scaled. If
we have more data the performance of the model will
definitely improve but we would require automated
ways of labeling images, e.g., by unsupervised image
segmentation, or an adaptive region flooding algorithm.

• Adding multiple classes would make it easier for the
model to distinguish different types of blue regions, and
we can also experiment with different color spaces.

• Training more complex models like SVM or neural-
network, given large enough data, can improve results
considerably.

• The size of the mini-batch sized for this problem is too
big in hindsight which limits the number of updates
per epoch. Thereby we need to run over the images for
many epochs for the model to train.

• The number of not-barrel-blue data points far exceed
the number of blue-barrel data points and can add
unnecessary bias to our model. We can solve this by
training on a subset so that the size of two (or n) classes
is balanced.

APPENDIX

Link to github page (project would be up once the
deadline has passed):

https://github.com/ijssaggu

This would include code for manual annotation of images,
training the logistic regression model, plotting cross-entropy
loss, learned weights and biases and any future work.


